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Abstract— Motivated by the requirements for effectiveness
and efficiency, path-speed decomposition-based trajectory plan-
ning methods have widely been adopted for autonomous driv-
ing applications. While a global route can be pre-computed
offline, real-time generation of adaptive local paths remains
crucial. Therefore, we present the Frenet Corridor Planner
(FCP), an optimization-based local path planning strategy for
autonomous driving that ensures smooth and safe navigation
around obstacles. Modeling the vehicles as safety-augmented
bounding boxes and pedestrians as convex hulls in the Frenet
space, our approach defines a drivable corridor by determining
the appropriate deviation side for static obstacles. Thereafter, a
modified space-domain bicycle kinematics model enables path
optimization for smoothness, boundary clearance, and dynamic
obstacle risk minimization. The optimized path is then passed
to a speed planner to generate the final trajectory. We validate
FCP through extensive simulations and real-world hardware
experiments, demonstrating its efficiency and effectiveness.

I. INTRODUCTION

Path-speed decomposition approaches are widely used in
autonomous vehicle trajectory planning (path and speed)
due to their reliability and efficiency [1]–[3]. These meth-
ods simplify the overall trajectory planning problem by
separately handling path and speed planning, resulting in
computationally efficient algorithms [4]–[6]. Building on this
framework, this work focuses on developing an efficient path
planning strategy for autonomous driving.

Consider the scenario illustrated in Fig. 1. If a route were
generated in advance from the map data, it would likely
not incorporate the cars parked on the side of the road.
However, deviating around the parked cars must be done in a
way that minimizes disruption to the oncoming traffic. This
necessitates online path generation where the path can be
updated smoothly while considering the dynamic limitations
of the ego vehicle.

Related Work

There is an extensive history of path planning research
including learning-based approaches [7], [8], artificial po-
tential field methods [9], graph search techniques [10], [11],
sampling-based methods [12], [13], polynomial (parametric)
optimization strategies [14], and non-parametric optimization
methods [15]. However, much of this work does not simulta-
neously address kinematic feasibility, path smoothness, and
computational efficiency for time-sensitive and safety-critical
applications, such as autonomous driving.

1Honda Research Institute, USA. Email: {faizan tariq,
zheng-hang yeh, avinash singh, disele,
sbae}@honda-ri.com

Fig. 1. Motivational scenario. The ego vehicle (in green) must deviate
from the lane center to avoid a collision with the parked cars on the roadside
while being cognizant of the oncoming traffic. Without a local path planner,
the ego vehicle may remain stuck, waiting indefinitely for the parked cars
to move before proceeding along its pre-determined global route.

Formal optimization methods can directly incorporate
dynamic and safety constraints, but this often comes at
a detriment to computational efficiency. Non-linear vehicle
dynamics [16], [17], the existence of multiple routes through
space-time [18], [19], and the uncertainty and interactivity of
other traffic participants [20]–[24] all combine to greatly in-
crease the complexity of the problem. This results in a highly
non-convex formulation which takes significant computation
time and resources to solve. Our approach follows this line
of work but focuses on systematically reducing complexity
by dividing the problem into stages, achieving efficient path
planning at a low computational cost.

Contribution

In this work, we propose the Frenet Corridor Planner
(FCP), an efficient optimization-based path planning strat-
egy that generates smooth paths around obstacles through
a multi-stage process. First, vehicles in the environment
are represented as safety-augmented bounding boxes, while
pedestrian clusters are modeled as convex hulls in the Frenet
space. The appropriate deviation side is then determined for
each static obstacle, and the drivable region (corridors) for
the ego vehicle is established. Next, an optimization problem
is solved to generate a path that maximizes smoothness,
maintains a safe distance from corridor boundaries, and
aligns with the reference path while considering the risk
associated with dynamic obstacles. This is achieved using a
modified space-domain bicycle kinematics model, which, to
the best of our knowledge, has not been previously explored.
Finally, the generated path is passed to the speed planner to
produce the overall trajectory. Our approach is rigorously
evaluated in the presence of perception noise through both
simulations and physical hardware experiments.
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II. PROBLEM SETTING

A. Frenet Coordinate System

In this work, we utilize the Frenet Coordinate System
[25], where the s-axis is representative of the longitudinal
displacement along a given reference (global) path (ref ),
while the d-axis denotes the lateral displacement orthogonal
to ref . Any point α ∈ R2 can be transformed from the Carte-
sian to the Frenet frame using a non-linear transformation as
follows:

fc : (αx, αy, ref) 7→ (αs, αd). (1)

B. System Architecture

The overall modular system architecture is adopted from
our previous work [26], with this study focusing specifically
on the motion planning layer. We tackle the trajectory
planning problem with a decoupled scheme (Fig. 2) that
allows us to tackle the path and speed planning problems
independently. This decomposes the overall problem com-
plexity to yield an efficient trajectory planning algorithm.
In our previous work, we developed a robust speed planning
method [3], so this work serves to fill in the gap by proposing
a corresponding path planning scheme. The generated trajec-
tory, consisting of both path and speed, is forwarded to the
downstream Control module, which also utilizes a decoupled
control scheme [22]. Longitudinal control is managed by a
PID controller, tuned using the CARLA simulator [27], while
lateral control is handled by a model predictive controller
(MPC) designed with a one-time-step planning horizon based
on the vehicle rotation model [28].

Remark 1: Although we have used our previously de-
veloped algorithms for the downstream speed and control
modules in the validation studies (Section IV), the modular
system architecture provides the flexibility to integrate any
external algorithm from the literature.

C. Planning Pipeline

The Frenet Corridor Planner (FCP) in itself consists of
several submodules that work together to generate a path
for the downstream speed planning and control modules
to follow, as depicted in Fig. 2. The Data Processor (DP)
processes perception and localization data to extract obstacle-
related information in the Frenet frame, which is then
sent to the Decision Governor (DG). The DG determines
the appropriate side to deviate each obstacle and forwards
this information to the Boundary Generator (BG). The BG
defines the boundaries of the drivable region (corridor) and
transmits them to the Path Optimizer (PO), which generates
a path using our proposed space domain kinematics model.

III. FRENET CORRIDOR PLANNER

A. Data Processor (DP)

The DP takes in the obstacles’ state (position, orientation,
and size) information from the external perception and local-
ization module [26] to generate safety-augmented bounding
boxes for vehicles and convex hulls for pedestrian clusters
with the help of DBSCAN [29], a density-based clustering
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Fig. 2. Trajectory planning pipeline. The data flow between the
various building blocks of FCP is illustrated on the left, while the output
visualization from each module is shown on the right.

algorithm. Any pedestrian not associated with a cluster is
treated as an independent obstacle. At the current time t, the
obstacle set containing the linearly interpolated points along
the edges of the bounding boxes and convex hulls in the
Frenet frame is denoted by Ot.

B. Decision Governor (DG)

In addition to having information on the locations and
speeds of the obstacles present in the environment, FCP
requires further information on the appropriate side of devi-
ation for a static obstacle. Specifically, FCP needs to know
whether a static obstacle should be considered in the upper
or lower boundary of the corridor, and this information is
provided by the DG. Therefore, DG partitions the obstacle
set (Ot) into disjoint lower (Olb

t ) and upper (Oub
t ) bound

obstacle sets such that Ot = Oub
t ∪Oub

t and Oub
t ∩Oub

t = ∅.
Since this work focuses primarily on the path planning

layer, we demonstrate the efficacy of FCP with a simple
decision tree [30] for our DG, as shown in Fig. 3. This
simple decision tree performs well even with moderate noise
in the perception and localization data. However, with large
noise, it may cause inconsistent obstacle classification (i.e.,
switching between lower and upper bounds), especially when
an obstacle is located near the center of the drivable space.



Fig. 3. Decision tree for boundary classification of each obstacle. The
decision tree evaluates the lower and upper gaps within the drivable space. If
both gaps are available, two approaches can be used: selecting the preferred
gap based on cost evaluation or treating the obstacle as a risk in PO.

Fig. 4. Boundary Generation. With the pedestrians shown as blue dots,
the augmented vehicle boundary depicted by green dots, and the convex
hulls of pedestrian clusters given by the blue lines, Algorithm 1 generates
the lower and upper bounds, shown by the red and blue lines, respectively.

Alternatively, the obstacle can be treated as a risk in the PO
(see Section III-D.4) to enhance path consistency. Owing
to the modularity of our approach, more advanced methods
from the literature [31] can be incorporated into DG to
improve the robustness of the trajectory planning pipeline.

C. Boundary Generator (BG)

The BG takes in Olb
t and Oub

t as well as the lower
and upper road limits, llbt and lub

t , to generate the lower
and upper bounds, dlb

t and dub
t , in the Frenet space for a

planning horizon of N steps with a longitudinal spacing
of ∆s meters, resulting in a planning distance of L =
N×∆s meters. The boundary generation algorithm, outlined
in Algorithm 1, essentially identifies the “extremum” d-value
for each obstacle point at the queried s-positions. Therefore,
the algorithm requires only a single pass over the obstacle
points resulting in a runtime complexity of O(No) where No

corresponds to the sum of the number of boundary points for
all obstacles in Ot. The output of BG is depicted in Fig. 4.

D. Path Optimizer (PO)

A path at the current time step t is defined as Pt =
[p1t , · · · , pNt ] where N denotes the number of waypoints and
pit ∈ R2 ∀i ∈ {1, · · · , N} denotes a waypoint in space.

Algorithm 1: Boundary Generation Algorithm

Input: Olb
t , Oub

t , llbt , lub
t , N , ∆s, s0

Output: dlb
t , dub

t

Initialize: dlb
t ← llbt ; d

ub
t ← lub

t

1 for O ∈ {Ot} do
2 for p = [ps, pd] ∈ O do
3 ind = ⌊(ps − s0)/∆s⌋ // Compute p index
4 if O ∈ Olb

t then
5 if dlb

t [ind] < pd then
6 dlb

t [ind] = pd
7 if ind ∈ {0, · · · , N − 2} then
8 dlb

t [ind + 1] = pd // Obstacle
corners handling

9 end
10 end
11 else if O ∈ Oub

t then
12 if dub

t [ind] > pd then
13 dub

t [ind] = pd
14 if ind ∈ {0, · · · , N − 2} then
15 dub

t [ind + 1] = pd // Obstacle
corners handling

16 end
17 end
18 end
19 end
20 end

1) Space Domain Kinematics Model: Since the goal of
this work is to generate Pt, we transform the vehicle
kinematic model from the space-time to space-only domain,
allowing us to reduce the problem’s complexity. For our base
model, we opt for the non-linear kinematic bicycle model,
which has been a popular choice for automated vehicle
trajectory planning due to its accuracy and efficiency [32].

In the Cartesian Frame, the states, Xt, and the control
inputs, Ut, of the ego vehicle at time instant t are given by
Xt =

[
xt yt ψt vt

]⊤ ∈ Xt and Ut =
[
at δt

]⊤ ∈ Ut,
respectively. Here, xt, yt, ψt, and vt respectively denote the
x-coordinate (m), y-coordinate (m), yaw angle with respect
to the x-axis (rad), and speed (m/s), whereas a(k) and δ(k)
respectively denote acceleration (m/s2), and steering angle
(rad). The sets Xt = R2 × R[0,2π) × R[0,V max] and Ut =
R2

[Umin,Umax], respectively, denote the feasible states and the
actuation limits. Then, the system dynamics read:

xt+1 = xt + vt cos(ψt + βt)∆t, (2)
yt+1 = yt + vt sin(ψt + βt)∆t, (3)

ψt+1 = ψt +
vt
ℓr

sinβt∆t, (4)

vt+1 = vt + at∆t, (5)

where t denotes the temporal index, ∆t denotes the sampling
timestep, and βt = tan−1

(
ℓr

ℓf+ℓr
tan δt

)
maps the steering

input (δt) to the vehicle orientation (ψt). Now, to remove
the time dependence, we fix the distance step as lt = vt∆t.



Moreover, since we explore only the spatial domain, we can
disregard the time-varying speed vt and fix the constant
distance step as lt ≡ ∆l, giving the following modified
kinematics model:

xk+1 = xk + cos(ψk + βk)∆l, (6)
yk+1 = yk + sin(ψk + βk)∆l, (7)

ψk+1 = ψk +
1

ℓr
sinβk∆l, (8)

where k denotes the spatial index. Now, the kinematics model
is given in terms of the fixed “arc length” step along the path,
denoted by ∆l. However, in order to have a uniform corre-
spondence between the path and the upper/lower bounds,
we need to further reformulate the kinematics model such
that the independent variable is the constant “longitudinal
distance” step (∆s), instead of ∆l – this facilitates the direct
integration of dlb

t and dub
t , generated by the BG, into the PO.

Remark 2: For the optimization problem (Section III-
D.3), the bounds dlb

t and dub
t are defined at each “knot”

of the path Pt, which necessitates the reformulation of the
kinematics model in terms of the independent ∆s variable.

Remark 3: With the updated set of states given by X̃k =[
xk yk ψk

]⊤
, the modified kinematics model is now

governed only by the control input δk ∈ R[δmin,δmax].
Now, assuming that we are working in the Frenet frame

(Section II-A), we can obtain the kinematics in terms of
the “longitudinal distance” step by introducing the following
non-linear transformation (projection): ∆s = ∆l cos(ψk +
βk). The kinematics model then reads:

xk+1 = xk +∆s, (9)

yk+1 = yk +
sin(ψk + βk)

cos(ψk + βk)
∆s

= yk + tan(ψk + βk)∆s, (10)

ψk+1 = ψk +
∆s

ℓr

sinβk
cos(ψk + βk)

. (11)

Note that the kinematics model is ill-posed for ψk + βk =
π/2. This corresponds to a path Pt orthogonal to ref – In
the Frenet frame, each point along such a path has the same
s value, while the path is not defined for any other s value,
leading to a singularity.

Remark 4: The bicycle kinematic model does not translate
directly from the Cartesian to the Frenet frame due to a non-
linear transformation with respect to ref (1). To address
this, we introduce a curvature-based model correction in
Section III-D.2 to ensure conformance of the Cartesian-based
kinematic model to the Frenet space.

Now, βk is defined as:

βk = arctan

(
lr

lf + lr
tan δk

)
, (12)

which is non-linear. To linearize, we approximate:

βk ≈
lr

lf + lr
δk. (13)

Fig. 5. Numerical validation for lr
lf+lr

|δk| under-approximating |βk|.
The linear plot lr

lf+lr
δk stays below the βk curve for dk ∈ [0, π

2
) and

above βk for dk ∈ (−π
2
, 0] showing |βk| ≥ lr

lf+lr
|δk| ∀δk ∈ (−π

2
, π
2
).

This approximation is kinematically valid (feasible) only
if lr

lf+lr
|δk| under-approximates |βk| – otherwise, the ap-

proximated kinematics with the maximum steering angle
δmax may not be feasible. Thus, we show that |βk| ≥

lr
lf+lr

|δk| ∀δk ∈ (−π
2 ,

π
2 ). For brevity, subscript k is omitted

in the following proof.
Proof: Let:

f(δ) = arctan (a tan δ)− aδ, (14)

where a = lr
lf+lr

∈ [0, 1]. We want to show that f(δ) ≥
0 ∀δ ∈

[
0, π2

)
and f(δ) ≤ 0 ∀δ ∈

(
−π

2 , 0
]
. The derivative

reads:

f ′(δ) =
a sec2 δ

1 + a2 tan2 δ
− a (15)

=
a

cos2 δ + a2 sin2 δ
− a (16)

= a

(
1− (cos2 δ + a2 sin2 δ)

cos2 δ + a2 sin2 δ

)
. (17)

Given a ∈ [0, 1], the following suffices for all δ (proof is
trivial):

cos2 δ + a2 sin2 δ ≤ 1. (18)

Thus, f ′(δ) ≥ 0, indicating f is a monotonically increasing
function. When δ = 0, f(δ) = 0. Due to the monotonicity,
for δ > 0, f(δ) ≥ 0, i.e.,:

f(δ) = arctan (a tan δ)− δ ≥ 0 (19)
←→ arctan (a tan δ) ≥ δ. (20)

Similarly, one can prove for δ ∈
(
−π

2 , 0
]
. The numerical

validation is shown in Fig. 5. In practice, especially for
normal highway driving where the car is not pushed to the
actuation limits, the steering range is typically limited to
[−0.6, 0.6] rad within which the approximation holds.



2) Actuation limit induced by reference path’s curvature:
We have thus far transformed the bicycle kinematic model
into a space-only kinematic model with longitudinal space
sampling. However, we are yet to account for ref ’s curvature
in the formulation, which is essential for converting the
kinematic model from the Cartesian to the Frenet space.
Neglecting this curvature can lead to kinematic infeasibility,
making it difficult for the vehicle to follow the computed
path. To address this, we directly impose curvature limitation
on the path-planning problem in Section III-D.3 by restrict-
ing the feasible actuation set using the angle changes along
ref at each step k, given as ∆ψ̄k.

Based on the kinematics model derived in Section III-D.1,
the change in heading angle (11) at any step k reads:

∆ψk =
∆s

ℓr

sinuk
cos (ψk + uk)

, (21)

which is lower bounded by ∆s
ℓr

tanuk for |ψk + uk| < pi
2

where uk = lr
lf+lr

δk. We approximate ∆ψ̄k ≈ ∆s
ℓr

tanuk
to over-constrain the feasible set for the steering input.
Consequently, the steering required to follow ref reads:

ūk = arctan

(
ℓr
∆s

∆ψ̄k

)
. (22)

Thereafter, the control bounds in (30) are restricted as:

uk + ūk ∈ [umin, umax] ∀k, (23)

where umin/max = lr
lf+lr

δmin/max.
3) Non-Linear Optimization Problem: Using the refor-

mulated Frenet space bicycle kinematics model derived in
Section III-D.1 and the spatial corridor boundaries, dlb

t and
dub
t , obtained through the BG, the path planning optimization

problem is posed as follows:

min
u

d⊤Qdd+ u⊤Quu+ λcurve

∑
k

tan2 uk

+ λrisk

∑
k

(
dk −

dlb
tk

+ dub
tk

2

)2

(24)

subject to:
sk+1 = sk +∆s, (25)
dk+1 = dk + tan(ϕk + uk)∆s, (26)

ϕk+1 = ϕk +
∆s

ℓr

sinuk
cos(ϕk + uk)

(27)

dlb
tk
≤ dk ≤ dub

tk
(28)

s0 = ŝt, d0 = d̂t, ϕ0 = ϕ̂t (29)

umin
k ≤ uk ≤ umax

k (30)

for all k ∈ {0, . . . , N − 1} where d = [d1, · · · , dk]⊤, u =
[u1, · · · , uk]⊤, N is the number of planning steps, operator
ˆ (hat) denotes the current measurement, the set R[umin

k ,umax
k ]

denotes actuation limits incorporating the limits induced by
ref ’s curvature (23), and Q and λ denote penalty weight
matrix and scalar, respectively. The objective function in (24)
penalizes: (i) deviation from the global route (recall that ref

corresponds to d = 0 in the Frenet frame), (ii) steering effort,
(iii) path curvature, and (iv) distance to boundaries.

Remark 5: To ensure computational efficiency, the op-
timization problem is formulated with a convex objective
function and no inequality constraints, making the kinematics
model the only source of non-convexity. This is achieved
by replacing the non-convex collision avoidance inequality
constraints with the precomputed corridor bounds. While the
kinematics model could be linearized, at the cost of model
accuracy, to formulate a convex problem, we found this lin-
earization unnecessary considering the strong computational
performance demonstrated in Section IV-D.

4) Dynamic Obstacle Handling: Generating boundaries
for dynamic obstacles (using Algorithm 1) may lead to re-
cursive infeasibility as fluctuating behaviors and predictions
over time may cause the upper and lower bounds to intersect.
Therefore, we treat dynamic obstacles as additive risks in the
optimization problem. Specifically, each predicted position
over a given time horizon is included as a convex cost in the
optimization cost (24). Therefore, the additive penalty reads:

rdyn = λdyn

∑
i∈{1,...,Ndyn

t }

∑
k

1

(d̂
(i)
k − dk)2

, (31)

where λdyn is the penalty weight, N dyn
t is the number of

dynamic obstacles within the planning space at the current
time t, and d̂

(i)
k is the predicted lateral (center of mass)

position of a dynamic obstacle i at step k. Recall that our
pipeline is based on a path-speed decomposition method
(Fig. 2), so the speed planner guarantees safety in space-
time with respect to dynamic obstacles.

5) Perception Noise Handling: In the presence of percep-
tion noise, the existing optimization problem can become
infeasible, especially when the ego vehicle is located close
to the corridor boundaries. To ensure problem feasibility, we
introduce a bounded slack variable for the bounds in (28) as:

dlb
tk
− αk ≤ dk ≤ dub

tk
+ αk, (32)

where αk ≤ ᾱ with a fixed ᾱ. Then, we add a slack penalty
term in (24) as λα

∑
k α

2
k with λα ≫ 0.

IV. EXPERIMENTS

A. Experimental Setup

The validation studies are performed on a system running
Ubuntu 22.04 LTS, equipped with an Intel® Xeon(R) Silver
4210R CPU @ 2.40GHz × 40 and an NVIDIA RTX A5000
graphics card. To assess the performance of FCP, we con-
sider a scenario designed to replicate real-world conditions
where the reference path is obstructed by stationary vehicles,
requiring the ego vehicle to generate an alternative trajectory,
as illustrated in Fig. 6. To maintain progress along its global
route, the ego vehicle must navigate around the obstacles
by temporarily entering the oncoming lane, return to the
original lane to evade an oncoming vehicle and deviate to
the oncoming lane again to finish the maneuver.



Fig. 6. Testing Scenario for Comparative Analysis. The ego vehicle
is depicted in blue, the oncoming vehicle in red, the stationary vehicles
in gray, their bounding boxes with red circles, the upper/lower bound in
dashed blue/red lines, the noisy perception/prediction in light red, and the
ego vehicle’s planned path in light blue. The scenario progression is shown
from top to bottom. Note that the lower and upper boundaries are generated
w.r.t. the centroid of the ego vehicle, and the ego vehicle’s path is updated
w.r.t. the dynamic obstacle and perception/prediction noises.

B. Comparative Analysis

We consider A⋆ [10], RRT⋆ [12] and Bidirectional B-
RRT⋆ [33], planning algorithms as baselines to compare
against FCP in the scenario depicted in Fig. 6.

The metrics chosen for this comparative analysis are:
(i) Algorithm runtime (s) - Mt, (ii) Maximum change in
yaw (rad) - Mmy , (iii) Average change in yaw (rad) - May ,
(iv) Average path deviation from reference path (m) - Ml,
(v) Minimum distance to the closest vehicle (m) - Mmd, and
(vi) Average distance to the closest vehicle (m) - Mad.

These metrics are selected to assess key characteris-
tics of the tested algorithms and the paths they generate.
Specifically, Mt measures computational efficiency, while
Ml quantifies the deviation of the generated path from the
reference trajectory. The safety performance of the algorithm
concerning the vehicles in the environment is evaluated
through Mmd and Mad. Additionally, the smoothness of the
generated path is assessed using Mmy and May .

The results of the quantitative comparative analysis are
summarized in Table I. To ensure a fair comparison, paths for
the sampling-based methods, RRT⋆ and B-RRT⋆, are gener-
ated 1000 times, with metric values averaged over these runs.
FCP significantly outperforms the baseline methods in Mt,
and Mmy highlighting its superior computational efficiency
and path smoothness. FCP also outperforms the baselines in
Mmd and Mmd, demonstrating enhanced safety performance.
In terms of May , FCP surpasses the A⋆ and RRT⋆ but
performs worse than B-RRT⋆ due to trade-offs with other
critical metrics. Notably, FCP is the only algorithm that
successfully passes the test scenario (without going out of
bounds or colliding with any obstacles).

Qualitatively speaking, as the dynamic obstacle ap-
proaches (Fig. 6), the FCP path smoothly adapts to shift
closer to the lower bound to account for the risk associated
with the dynamic obstacle. The path remains robust to

TABLE I
SCENARIO-BASED COMPARATIVE ANALYSIS

Method/Metric FCP A⋆ RRT⋆ B-RRT⋆

Scenario Passed Y N N N
Run-time 0.035 0.628 0.173 0.187

Max delta yaw 0.053 0.785 0.816 0.717
Avg delta yaw 0.016 0.051 0.003 0.002
Avg path div. 2.336 2.360 2.867 2.922
Min dist obs 3.182 2.683 2.693 2.586
Avg dis obs 34.99 29.90 29.81 30.22

Carla Simulator

ROS Bridge

Scenario Runner

   Localization/perception

Traffic Scenario

Planning and Control
Throttle/brake/steering

Throttle/brake/steering

Real-time ControlWaypoints

ROS

   Localization/perception

GRP LPP SP

Fig. 7. CARLA Simulation Setup. The simulation scenario, generated
by the Scenario Runner, is passed on to the CARLA Simulator, which
communicates with the Planning and Control ROS nodes through the ROS
bridge node at a frequency of 10 Hz. GRP denotes global route planning,
LPP denotes local path planning, and SP denotes speed planning.

perception noise, maintaining consistency despite fluctuating
bounds. This resilience stems from IPOPT [34] navigating
within the interior of the feasible region rather than along its
boundaries. Additionally, the solution remains feasible even
under high noise levels (second row of Fig. 6) due to the
slack variable introduced in Section III-D.5.

C. CARLA Simulations

To thoroughly evaluate the performance of FCP in a
high-fidelity environment, the scenario shown in Fig. 8 is
implemented in the CARLA Simulator [27], which provides
a realistic urban driving environment with sensor simulation

Fig. 8. CARLA Simulations. The numbered frames show the progression
of the ego vehicle through the scenario. The Rviz windows, below the Carla
Pygame windows, show various objects considered during planning and
the output of FCP. The ego vehicle is depicted in blue, and the obstacles
are depicted as yellow cuboids surrounded by yellow safety-augmented
bounding boxes. The transparent path in front of the obstacle is a constant
velocity prediction path. The reference path is shown as the green line, and
the local path generated by FCP is shown in red.



TABLE II
MONTE CARLO SIMULATIONS

Model Time Acc.
Min

Acc.
Max

Jerk
Min

Jerk
Max

Ang.
Acc.
Max

Ang.
Jerk
Max

Average
FCP 24.743 -2.83 1.85 -2.82 1.9 40.02 67.38
A⋆ 28.834 -2.85 1.78 -2.93 2.48 42.31 91.1

Standard Deviation
FCP 0.843 0.142 0.070 0.120 0.130 1.855 4.235
A⋆ 2.081 0.221 0.066 0.124 0.200 3.348 11.685

and dynamic actors. The simulation setup within CARLA
is illustrated in Fig. 8. The local path planner (LPP as
mentioned in Fig. 7) employed is FCP. The other system
module i.e., the speed planner (SP) is derived from [3]. The
performance of FCP in this scenario within the CARLA
environment is demonstrated in Fig. 8, where the ego vehicle
successfully navigates around dynamic and static obstacles.

To rigorously evaluate FCP against a standard graph-based
planner, namely A⋆, we conduct Monte Carlo simulations
for the scenario depicted in Fig. 8. In these simulations,
the positions and orientations of the other three vehicles are
randomized within predefined ranges: the longitudinal and
lateral positions vary within 10m and 2m, respectively, while
the vehicle headings are randomized within a 10◦ range.
Maintaining all system modules identical, except for the local
path planning component from Fig. 7, we run 50 simulation
trials each and present the results across various performance
metrics in Table II. Notably, none of the trials for either
method resulted in a collision.

The metrics used for this Monte Carlo analysis include:
(i) Completion time (s); (ii) Minimum linear acceleration
(m/s2); (iii) Maximum linear acceleration (m/s2); (iv) Min-
imum linear (deceleration) jerk (m/s3); (v) Maximum linear
(acceleration) jerk (m/s3); (vi) Maximum angular acceler-
ation (rad/s2); and, (vii) Maximum angular jerk (rad/s3).
The linear metrics reflect the vehicle’s throttle and braking
behavior, primarily influenced by the speed planner, while
the angular metrics correspond to steering dynamics, which
are governed by the smoothness of the generated path.

The results in Table II demonstrate that FCP outperforms
A⋆ in terms of path smoothness, which directly impacts
the angular and steering-related metrics. A smoother path
enhances passenger comfort and allows the ego vehicle to
efficiently return to the reference trajectory, as indicated by
lower completion time. Additionally, the smoother trajec-
tories generated by FCP provide the speed planner with
greater confidence to accelerate and decelerate along the
deviation path, leading to increased linear acceleration values
compared to A⋆.

Furthermore, the standard deviation values reinforce the
consistency of FCP’s performance relative to A⋆. Lower
standard deviation values indicate that FCP consistently
generates smooth paths across a wide range of scenarios,
ensuring reliable and predictable behavior.

D. Computational Time Analysis

We assess the computational efficiency of our algorithm,
implemented using IPOPT in Casadi (Python), by analyzing

Fig. 9. Computational Efficiency Analysis. The test scenario in Fig. 6
is randomized, similar to the Monte-Carlo simulations in Section IV-C, and
repeated 1000 times to obtain the FCP computation time distribution.

Fig. 10. Hardware Demonstration. A scenario involving two parked vehi-
cles and an oncoming vehicle is demonstrated using 1/10-scale autonomous
cars. The numbered frames illustrate the progression of the scenario, with
each frame containing snapshots of the robots on the test track along with
super-imposed trajectories depicting the paths taken by the vehicles.

the algorithm runtime distribution across 1000 randomized
test scenario runs, with both core and thread counts restricted
to one. The runtime distribution is illustrated in Fig. 9.
Our algorithm achieves an average computation time of
0.0424 seconds and a maximum of 0.0758 seconds, demon-
strating its capability for real-time operation. Furthermore,
even greater computational efficiency could be achieved if
implemented in a compiled language such as C/C++.

E. Hardware Demonstration

We demonstrate the performance of FCP in a scenario
involving four customized 1/10-scale Multi-agent System
for non-Holonomic Racing (MuSHR) [35] autonomous ve-
hicles—comprising one ego vehicle, two stationary vehicles
mimicking parked vehicles, and one moving vehicle—at our
testing facility located at Honda Research Institute Inc USA,
San Jose, CA. This scenario is similar to the simulation
scenario shown in Fig. 8, with an added layer of difficulty
for FCP to encounter a static obstacle on a curved path as
soon as it turns left. The Robot Operating System (ROS)



serves as the communication framework, facilitating inter-
action between sensors, actuators, and computing units, and
is executed within a Docker container. FCP runs inside a
separate Docker container, ensuring efficient execution. The
ego vehicle utilizes LiDAR based localization to estimate its
state, including position, velocity, and orientation, using a
predefined grid map of the track and surrounding landmarks.
The planner operates at a frequency of 10Hz and runs on
an Intel NUC mini PC onboard the MuSHR vehicle, which
has Ubuntu 20.04 LTS as its operating system (OS). The
ego vehicle’s trajectory is visualized through sequentially
numbered frames in Fig. 10 with the paths taken by the ego
and the dynamic obstacle superimposed in each frame. The
successful deployment of FCP on the physical robot, along
with its smooth execution, highlights its computational effi-
ciency and robustness in handling real-world uncertainties,
perception noises and delays.

V. CONCLUSION

We propose a computationally efficient risk-aware lo-
cal path planning algorithm to generate smooth deviation
paths in reference to a fixed path for automated driving
applications. Validation results from CARLA simulations,
comparative analysis and scaled autonomous vehicle tests
demonstrate the effectiveness of our approach.
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