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Abstract— This paper proposes a novel formation maneuver
control method for both 2-D and 3-D space, which enables
the formation to translate, scale, and rotate with arbitrary
orientation. The core innovation is the novel design of weights
in the proposed augmented Laplacian matrix. Instead of using
scalars, we represent weights as matrices, which are designed
based on a specified rotation axis and allow the formation to
perform rotation in 3-D space. To further improve the flexibility
and scalability of the formation, the rotational axis adjustment
approach and dynamic agent reconfiguration method are de-
veloped, allowing formations to rotate around arbitrary axes
in 3-D space and new agents to join the formation. Theoretical
analysis is provided to show that the proposed approach pre-
serves the original configuration of the formation. The proposed
method maintains the advantages of the complex Laplacian-
based method, including reduced neighbor requirements and
no reliance on generic or convex nominal configurations, while
achieving arbitrary orientation rotations via a more simplified
implementation. Simulations in both 2-D and 3-D space validate
the effectiveness of the proposed method.

I. INTRODUCTION

In recent years, formation control of multi-agent systems
has gained significant attention due to its wide range of
applications in various fields, such as drone swarms [1],
AUV formations [2], robotic cooperation [3], etc. While
formation shape control remains essential for coordinated
tasks, most scenarios increasingly require dynamic adapt-
ability. This promotes the shift from formation shape control
to formation maneuver control, which enables formations
to perform continuous shape variation. Formation maneuver
control faces the new challenge of maintaining invariant
geometric features during the maneuver process.

Although conventional consensus-based formation control
methods are capable of tracking time-varying formations,
they usually require agents to have explicit knowledge of
target positions [4], [5]. Nevertheless, in most cases, agents
are mainly restricted to gathering information from their
neighboring agents rather than having access to global infor-
mation [6]. To deal with this issue, displacement-based [7],
[8], distance-based [9], and bearing-based methods [10], [11]
utilize the information from neighboring agents. They define
target formations through invariant constraints on inter-agent
displacements, distances, and bearings. Ren et al. [7], [8] pro-
posed displacement-based method which successfully tracks
time-varying formation translation yet encounters difficulties
when dealing with time-varying scaling and rotation. De
Marina et al. [9] put forward a distance-based method that is
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capable of handling time-varying formation translation and
rotation while being ineffective in managing scaling. Zhao
et al. [10], [11] introduced bearing-based method which can
accommodate time-varying formation translation and scaling
while being unable to execute formation rotation.

Recent researches have improved formation maneuverabil-
ity by introducing advanced constraints, such as similarity-
based rigidity constraints, complex Laplacian, equilibrium
stress matrices, and barycentric coordinates. The forma-
tion maneuver control method [12] based on similarity-
based rigidity constraints effectively enables formation shape
variation under translation, rotation, and scaling, but the
inherent rigidity may pose challenges in terms of flexibility
for reconfiguration. The complex Laplacian approach [13]–
[16] enables formation shape variation under translation,
rotation, and scaling. Because of the property of complex
numbers, this method is restricted to 2-D space. Xu et al. [17]
extended the complex Laplacian-based method to 3-D space
by introducing an additional dimension. To achieve rotation
with any orientation in 3-D space, the method requires con-
structing three constant nominal configurations, which leads
to high complexity and redundancy. In contrast, formation
maneuver control methods based on equilibrium stress matri-
ces [18]–[21] and barycentric coordinates [22], [23] support
any-dimensional formation shape variation. However, these
methods still have the following two issues. First, followers
require at least d + 1 neighbors in d-dimensional space.
Second, nominal configurations must satisfy generic or rigid
conditions to construct an invertible follower-follower ma-
trix, which ensures unique and localizable formations.

In this paper, we present a novel formation maneuver
control method based on the augmented Laplacian matrix.
The proposed approach enables formations to simultaneously
execute translational, rotational, and scaling maneuvers in
both 2-D and 3-D space. Compared with existing methods,
our main contributions are as follows:

• Instead of scalar values, the weights of inter-agent
constraints are represented as matrices, which enables
the formation to rotate about the given rotation axis.

• To achieve arbitrary orientation rotations of the forma-
tion, we propose a dynamic rotation axis adjustment
approach. We also develop a dynamic agent reconfigu-
ration method that allows seamless integration of new
agents into the formation. It is proved that both methods
preserve the invariance of formation’s configuration.

• We establish a theoretical connection between the pro-
posed method and existing complex Laplacian method,
thereby showing that the complex Laplacian method is
actually a special case of our method.
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The rest of this paper is organized as follows. Section II
presents some preliminaries and the objectives of this paper.
Section III proposes the augmented Laplacian matrix, and
control protocols for both leaders and followers. Further, we
give methods for adjusting the rotation axis of formation
and dynamic agent reconfiguration. Section IV reveals the
relationship between the proposed method and the 2-D
complex Laplacian method. Simulation results are presented
in Section V to validate the effectiveness of our proposed
method. Lastly, the conclusion is given in Section VI.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Notations

Let R be the set of real numbers, and C be the set of
complex numbers. A⊤ is the transpose of the real matrix
A ∈ Rm×n. Consider a multi-agent system with n agents in
Rd, where d ∈ {2, 3} and n ≥ 3. Let pi ∈ Rd be the position
of the i-th agent, ri be the nominal position and p∗i (t) be
the target position at time t. Denote the interaction graph
among the agents as G = (V, E), where V = {1, . . . , n} and
E ⊆ V × V are the sets of agents and edges, respectively.
This paper only considers 2-rooted graphs, i.e., there is a
subset of two agents, and every other agent is 2-reachable
from this subset [13].

Denote (G, p) as a formation of n agents, where G is
the interaction graph and p = [p⊤1 , . . . , p

⊤
n ]

⊤ ∈ Rnd is the
configuration of the formation. Similarly, let (G, p∗(t)) and
(G, r) be the target formation and nominal formation, where
p∗(t) = [p∗1(t)

⊤, . . . , p∗n(t)
⊤]⊤ and r = [r⊤1 , . . . , r

⊤
n ]

⊤. A
nominal configuration r is called generic if the coordinates
r1, . . . , rn do not satisfy any nontrivial algebraic equation
with integer coefficients [17]. The centroid rc ∈ Rd of the
nominal formation (G, r) is defined as

rc =
1

n

∑
i∈V

ri. (1)

Let Vf = {1, . . . , nf} and Vl = V \ Vf be the sets
of followers and leaders. Let pf =

[
p⊤1 , . . . , p

⊤
nf

]⊤
and

pl =
[
p⊤nf+1, . . . , p

⊤
n

]⊤
be the configurations of followers

and leaders, respectively. Similarly, let p∗f (t), p
∗
l (t) and rf ,

rl be the target configuration and nominal configuration.
Let ζ = [ζx, ζy, ζz]

⊤ ∈ R3 be the axis of rotation in 3-D
space, and ζ× be the skew-symmetric matrix of vector ζ. Let
Ni ≜ {j ∈ V : (i, j) ∈ E} be the set of neighbors of agent
i. Let Id ∈ Rd×d be an identity matrix of dimension d× d,
and 1d be the all-one vector of dimension d. Let ⊗ be the
Kronecker product.

B. Invariant Constraints

A main challenge in formation maneuver control lies in
the design of constraints, which maintain invariance under
formation transformations. Specifically, the constraints are
realized through the design of edge weights wij in the
formation’s interaction graph. For instance, the constraint
proposed in [11] maintains translation and scaling invariance

through bearing-based weights wij , while the constraint in
[18] extends the invariance to affine transformations.

A general form of constraints is formulated as∑
j∈Ni

wij(pj − pi) = 0, (2)

where wij are the weights on the edges (i, j). Then, the
constraint matrix W is defined as

W (i, j) =


wij if i ̸= j and j ∈ Ni

0 if i ̸= j and j /∈ Ni

−
∑

k∈Ni
wik if i = j

(3)

The shape of the matrix W differs among different methods.
For instance, in the complex Laplacian methods [13]–[16],
W ∈ Cn×n, while in the methods based on equilibrium stress
matrices [18]–[21], W ∈ Rnd×nd. In general, (2) can be
written in the matrix form as

Wp = 0. (4)

Then, given a configuration p, an immediate question is
how to generate weights wij under constraints (2). Specif-
ically, the work [13] addressed this by decomposing the
problem into cases where agents have exactly two neighbors
and those with more than two neighbors. First, for agent i
with two neighbors, j, k, the weights are designed as

wij(pj − pi) + wik(pk − pi) = 0. (5)

Second, for agent i with more than two neighbors, i1, . . . , im
where m > 2, the weights are constructed via

ξh = [0, 0, . . . , w
(h)
iij

, 0, . . . , w
(h)
iik

, . . . , 0],

[wii1 , wii2 , . . . , wiim ] =

C2
m∑

h=1

ξh,

(6-a)

(6-b)

which, in essence, converts the problem into combinations
of two-neighbor cases.

The constraint matrix, W , is partitioned into follower-
leader blocks as

W =

[
Wff Wfl

Wlf Wll

]
, (7)

where Wff ∈ Rnfd×nfd and Wll ∈ Rnld×nld describe the
follower-follower and leader-leader blocks, respectively. The
cross blocks Wfl ∈ Rnfd×nld and Wlf ∈ Rnld×nfd describe
leader-follower interactions.

Definition 1. A nominal formation (G, r) is termed localiz-
able if the follower-follower matrix Wff is non-singular.

When the formation configuration p is at nominal config-
uration r, (4) decomposes into follower-leader blocks as[

Wff Wfl

Wlf Wll

] [
rf
rl

]
= 0, (8)

which further implies Wffrf + Wflrl = 0. Given the
leaders’ nominal configuration rl, non-singularity of the



matrix Wff guarantees the existence of a unique solution
for the followers’ configuration rf . Specifically,

rf = −W−1
ff Wflrl. (9)

Assumption 1. The nominal formation (G, r) is localizable,
i.e., the matrix Wff is non-singular.

In Sec. III, we will show the rationality of this assumption.

C. Target Formation and Objectives

The translation and scaling parameters are denoted by
T (t) ∈ Rd and k(t) ∈ R. In addition, denote Rζ(t) ∈ Rd×d

as the rotation matrix about axis ζ. Let θ be the rotation
angle. By Rodrigues’ rotation formula, the rotation matrix
Rζ is expressed as

Rζ = Id + (sin θ)ζ× + (1− cos θ)(ζ×)2. (10)

Subsequently, according to [17], the time-varying target
configuration p∗(t) is defined similarly based on the nominal
configuration r as

p∗(t) = 1n ⊗ (rc + T (t))︸ ︷︷ ︸
α∗(t)

+ k(t)(In ⊗Rζ(t))(r − 1n ⊗ rc)︸ ︷︷ ︸
β∗(t)

,

(11)
where α∗(t) is the translation term and β∗(t) is the scaling
and rotation term.

Definition 2. For a nominal formation (G, r), a target
formation (G, p∗) is termed similar to (G, r), if there is a
specific rotation axis ζ, such that the constraint matrix W
generated by the nominal formation (G, r) satisfies

Wp∗ = 0. (12)

During formation maneuvers, the time-varying target for-
mation (G, p∗(t)) should remain similar to (G, r) for all time,
i.e., p∗(t) ∈ ker(W ) for all t.

Assumption 2. Only leaders get access to the target po-
sitions, which means only leaders know the time-varying
parameters T (t), k(t), Rζ(t) in (11). Followers only know
the relative positions and velocities of their neighbors.

Under Assumption 1 and Assumption 2, and leveraging
(11) and (12), the target configurations of the leader and
follower groups are written as

p∗l = 1nl
⊗ (rc + T (t))

+k(t)(Inl
⊗Rζ(t))(rl − 1nl

⊗ rc),

p∗f = −W−1
ff Wflp

∗
l .

Then, the objectives of this paper are as follows.
• Design a constraint matrix W to ensure that the target

formation configuration p∗(t) satisfies (12) for all time
during formation maneuvers.

• Design control protocols for the leaders and followers
such that lim

t→∞
(pl(t)− p∗l (t)) = 0,

lim
t→∞

(pf (t) +W−1
ff Wflpl(t)) = 0.

(13-a)

(13-b)

• Propose a method that enables the formation to adjust its
rotation axis at any time to rotate with any orientations
in 3-D space.

• Develop a method enabling the real-time and seamless
integration of new agents into the formation.

III. METHODOLOGY

A. Augmented Laplacian Matrix

In 3-D formation maneuver control, a fundamental chal-
lenge is achieving arbitrary formation rotations. Existing
methods often lack systematic and straightforward solutions
for this problem. To address this gap, we propose the
augmented Laplacian matrix, where weights wij are matrices
in Rd×d rather than scalars.

Definition 3. Given rotation axis ζ, the augmented Laplacian
matrix W is expressed in the form of (3), and each weight
wij is defined by

wij = aijId + bijζζ
⊤ + cijζ

×, (14)

where coefficients aij , bij , cij ∈ R.

As shown in (5) and (6), regardless of the number of neigh-
bors agent i has, the problem can be split into combinations
of two-neighbor cases. Therefore, assuming that agents j, k
are the neighbors of agent i, by (2), (5) and (6), we have

(aijId + bijζζ
⊤ + cijζ

×)(pj − pi)

+ (aikId + bikζζ
⊤ + cikζ

×)(pk − pi) = 0. (15)

There are six unknowns (aij , bij , cij , aik, bik, cik) and three
equations in (15). By the rank-nullity theorem, a non-trivial
solution exists if and only if the coefficient matrix has
rank less than three. Under Assumption 1, feasible weight
matrices wij can always be constructed to satisfy (2).

Theorem 1. Given rotation axis ζ, the weight w defined
in (14) commutes with the rotation matrix Rζ , i.e.,

wRζ = Rζw.

Proof. According to (10) and (14), we have

wRζ −Rζw =b sin θ(ζζ⊤ζ× − ζ×ζζ⊤)+

a(1− cos θ)(ζζ⊤(ζ×)2 − (ζ×)2ζζ⊤),

Utilizing the property of skew-symmetric matrices, we have

ζζ⊤ζ× = ζ×ζζ⊤ = 0, ζζ⊤(ζ×)2 = (ζ×)2ζζ⊤ = 0.

Thus, we have

wRζ −Rζw = 0 =⇒ wRζ = Rζw.

Using Theorem 1, the weight design (14) is further proved
to satisfy (12).

Theorem 2. The time-varying target formation (G, p∗(t)) in
(11) is similar to its nominal formation (G, r) with weights
wij in the form of (14).



Proof. For the nominal formation (G, r), the constraints (2)
are expressed as∑

j∈Ni

wij(rj − ri) =
∑
j

wijrj = 0. (16)

First, for the translation term in (11), we have

Wα∗(t) =


∑

j w1j(rc + T (t))
...∑

j wnj(rc + T (t))

 = 0.

Second, for the scaling and rotation term , we have

Wβ∗(t) =


∑

j w1jk(t)Rζ(t)(rj − rc)
...∑

j wnjk(t)Rζ(t)(rj − rc)

 .

For each row, by Theorem 1, w commutes with Rζ∑
j

wijk(t)Rζ(t)(rj − rc)

= k(t)Rζ(t)
∑
j

wij(rj − rc) = 0.

Thus, we obtain

W [α∗(t) + β∗(t)] = Wp∗(t) = 0.

Therefore, given the augmented Laplacian matrix W with
entries in the form of (14), the target formation (G, p∗(t)) is
similar to the nominal formation (G, r) for all time.

B. Control Protocols

Consider that each agent is modeled as a single-integrator

ṗi(t) = vi(t), (17)

where vi(t) is the control protocol to be designed. Subse-
quently, we will present the specific forms for leaders and
followers respectively.

Control Protocol for the Leaders. According to [17], a
feasible control protocol for the leaders is obtained as

vi =

−tanh(xi − x∗
i ) + ẋ∗

i

−tanh(yi − y∗i ) + ẏ∗i
−tanh(zi − z∗i ) + ż∗i

 , i ∈ Vl, (18)

where vi ∈ Rd is the control input, tanh(·) is the hyperbolic
tangent function, and ẋ∗

i , ẏ∗i , ż∗i are the target velocities.

Lemma 1 (Lemma 3 [17]). The leaders group achieves their
control objective (13-a) under control protocol (18).

Control Protocol for the Followers. Under Assumption 1,
the followers can utilize constant weights in Wff and Wfl

to achieve formation maneuver control without knowing
the time-varying parameters T (t), k(t), Rζ(t) in (11). The
distributed control protocol for followers is given by

ṗi = γ−1
i

∑
j∈Ni

wij [α(pi − pj)− ṗj ], i ∈ Vf , (19)

where γi =
∑

j∈Ni
wij represents the sum of weights for

agent i’s neighbors, and α ∈ R+ is a positive control gain
parameter. In matrix form, (19) is expressed as

Wff ṗf +Wflṗl = −α(Wffpf +Wflpl). (20)

Lemma 2. The followers group achieves their control ob-
jective (13-b) under control protocol (20).

Proof. Let ef represent the tracking error for followers,
which is defined by

ef = pf +W−1
ff Wflpl.

Differentiating this equation gives

ėf = ṗf +W−1
ff Wflṗl = −α(Wffpf +Wflpl) = −αef .

Consider a Lyapunov function

V =
1

2
e⊤f ef .

The time derivative of V is

V̇ = e⊤f ėf = −αe⊤f ef .

Since V̇ < 0 for ef ̸= 0, the desired conclusion holds.

C. Rotation Axis Adjustment

Since the augmented Laplacian matrix is related to ζ,
the proposed augmented Laplacian method confines the
formation to rotate around a given axis ζ. Thus, a natural
question is how to enable the formation to rotate with any
orientations in 3-D space. To address this issue, we introduce
a method for adjusting the rotation axis during the formation
maneuver, while maintaining the invariance of the formation
geometry.

First, at time t1, the formation reaches the target con-
figuration, i.e., p(t1) = p∗(t1). At this specific time t1,
the rotation axis is adjusted from ζ to ζu. Next, based
on the current formation (G, p(t1)) and rotation axis ζu,
the augmented Laplacian matrix Wu must be reconstructed.
Finally, in accordance with (11), the target configuration
p∗u(t) for the subsequent formation maneuver is expressed
as

p∗u(t) = α∗
u(t) + β∗

u(t), (21)

where α∗
u(t) = 1n ⊗ (rcu + Tu(t)) and β∗

u(t) = ku(t)(In ⊗
Rζu(t))(ru − 1n ⊗ rcu).

Theorem 3. After adjusting the rotation axis ζ to ζu , the
new target formation (G, p∗u(t)) is still similar to the nominal
formation (G, r).

Proof. From (21), we have

ru = p∗(t1) = α∗(t1) + β∗(t1),

rcu =
1

n

∑
i∈V

rui
= rc + T (t1).



Then, (21) is transformed to

p∗u(t) = 1n ⊗ (rc + T (t1) + Tu(t))+

ku(t)k(t1)(In ⊗Rζu(t)Rζ(t1))(r − 1n ⊗ rc),

where T (t1)+Tu(t) is treated as Tu′(t), ku(t)k(t1) is treated
as ku′(t) and Rζu(t)Rζ(t1) is treated as Rζu′ . According
to Definition 2, the new target formation (G, p∗u(t)) is still
similar to the nominal formation (G, r).

D. Dynamic Agent Reconfiguration

In practical cases, the integration of new agents into a
formation is widely adopted, highlighting the significance
of a scalable formation maneuver control method. In this
subsection, we propose a method that allows new agents
to seamlessly join the formation at any time for dynamic
reconfiguration.

Specifically, the integration of a new agent into the forma-
tion involves the following steps. Initially, during the original
formation maneuver, the new agent identifies its time-varying
joining position. Upon determining this position, the agent
utilizes the control law (18) to reach its target position.
Once the new agent arrives at the designated position, the
augmented Laplacian matrix W is reconstructed to accom-
modate the new agent while preserving the configuration of
the original part. Ultimately, the integrated agent employs the
distributed follower control protocol to maintain its relative
position within the desired formation during subsequent
maneuvers.

Theorem 4. After a new agent joins the formation, the
method proposed above maintains the configuration of the
original part, i.e., p′o = p, where p′o is the configuration
after the addition of a new agent .

Proof. After the integration of the new agent, the positions
of all agents in the formation are represented by

p′ =

[
padd
p′o

]
, (22)

where padd is the position of the added agent.
Then, the reconstructed augmented Laplacian matrix is

presented in W ′ = Wex +∆W , where W ′ satisfies W ′p′ =
0, Wex represents the extended matrix of the original aug-
mented Laplacian matrix W , with the specific form as

Wex =

[
0d×d 0d×nd

0nd×d Wnd×nd

]
,

and ∆W represents the augmented Laplacian matrix exclu-
sively concerning the added agent and its neighbors. By
constraints (2), considering the original configuration and the
new agent, we have

Wp = 0,W ′p′ = 0. (23)

Hence, ∆W must satisfy ∆Wp′ = 0. It follows that
Wexp

′ = 0, which further implies that Wp′o = 0. Thus,
we have

Wffp
′
of +Wflp

′
ol = 0.

Since the leaders’ positions remain invariant during the
integration of the new agent, i.e., p′ol = pl, it is concluded
that the positions of the original followers in the formation
also remain unchanged:

p′of = W−1
ff Wflp

′
ol = W−1

ff Wflpl = pf .

Therefore, the integration of new agents maintains the in-
variance of the original formation configuration.

IV. RELATIONSHIPS WITH 2-D COMPLEX LAPLACIAN
METHOD

In this section, we show that the 3-D formation maneuver
control method based on the augmented Laplacian matrix
proposed in this paper can be treated as an extension of the
2-D complex Laplacian method [11], [15].

In the complex Laplacian approach, the complex positions
p and weights wij are expressed as p = x + yι and wij =
aij + bijι, respectively, where x, y, a, b ∈ R and ι is the
imaginary unit with ι2 = −1. For any position p ∈ C, the
weights wij acting on p are expressed as

wijp = (aijx− bijy) + (bijx+ aijy)ι. (24)

In 2-D plane rotations, all transformations occur around
the Z-axis, which allows the 2-D complex Laplacian method
to be considered as a special case of the proposed augmented
Laplacian approach under rotations about the axis ζ =
[0, 0, 1]⊤. To align with the complex Laplacian method, we
adjust the order of coefficients in equation (14)

wij = aijId + cijζζ
⊤ + bijζ

×

=

aij −bij 0
bij aij 0
0 0 aij + cij

 . (25)

Weights wij constructed in (25) have the same property
as complex weights. First, for any position p = [x, y, 0]⊤ in
2-D space, the action of weights wij on p is

wijp = [aijx− bijy, bijx+ aijy, 0]
⊤, (26)

which is equivalent to the action (24) in complex domain.
Additionally, by Theorem 1, weights constructed in the
proposed augmented Laplacian method also commute with
rotation matrices Rζ , which is trivial for the complex Lapla-
cian method due to the property of scalars.

Therefore, our proposed method is also available in 2-D
space. Let Rz(t) be the rotation matrix around the Z-axis.
Then the target configuration p∗ is expressed as follows,

p∗(t) = 1n ⊗ (rc + T (t)) + k(t)(In ⊗Rz(t))(r − 1n ⊗ rc).
(27)

By Theorem 2, the target formation (G, p∗) is similar to its
nominal formation, i.e., Wp∗ = 0. Therefore, the complex
Laplacian method is equivalent to the method proposed in
this paper in 2-D space, both in terms of the construction of
weights and the representation of the target formation.

Notably, the key difference between the 2-D and 3-D
scenarios lies in the form of the weights wij . For 2-D cases,
the construction of weights wij is simplified to the expression



in (25). In spite of this, the theorems and control protocols
proposed in Sec. III can be directly applied to 2-D cases
without any modification.

V. SIMULATION

We will present two simulation examples in both 2-D
and 3-D space. The multi-agent systems in 2-D and 3-D
space both consist of three followers Vf = {1, 2, 3} and two
leaders Vl = {4, 5} shown in Fig. 1 and Fig. 3, where the
trajectories of the followers and leaders are marked in blue
and red, and the trajectory of the new agent in 3-D simulation
is marked in green. In Fig. 1 and Fig. 3, the formations
connected by gray lines are non-target formations, while the
formations connected by green lines are target formations.
The red arrows in Fig. 3 represent the rotation axis.

A. Analysis of 2-D Simulation Results

In the 2-D simulation, the nominal configuration r =
[r⊤1 , ..., r

⊤
5 ]

⊤ is designed as

r1 = [0.5, 0.5, 0]⊤, r2 = [0.5,−0.5, 0]⊤, r3 = [0, 0, 0]⊤,

r4 = [−1, 1, 0]⊤, r5 = [−1,−1, 0]⊤.

with the positions of agents represented in 3-D to directly
use the 3-D method proposed in this paper.

Fig. 1. Trajectories in 2-D space (The dark areas stand for obstacles.)

In this simulation, we verify the feasibility of our method
in 2-D space. As shown in Fig. 1, the 2-D formation can
freely translate, scale and rotate to avoid obstacles. As shown
in Fig. 2, the control protocols we designed ensure that the
formation quickly converges to the target formation.

Fig. 2. Tracking errors in 2-D space.

B. Analysis of 3-D Simulation Results

In the 3-D simulation, the nominal configuration r =
[r⊤1 , ..., r

⊤
5 ]

⊤ is designed as

r1 = [0.05, 0, 1]⊤, r2 = [−0.05, 0,−1]⊤, r3 = [1,
√
3, 0.05]⊤,

r4 = [1,−
√
3,−0.05]⊤, r5 = [−2, 0, 0]⊤.

Fig. 3. Trajectories in 3-D space (The dark areas stand for obstacles.)

Note that since there are only two leaders, the line connecting
them must not be parallel to the axis of rotation.

In this simulation, as shown in Fig. 3, we not only verify
that, based on the proposed control method, the formation is
capable of translating, scaling and rotating around any axis in
3-D space, but also show that it is possible for the formation
to realize reconfiguration.

Fig. 4 presents that tracking errors in each axis for both
the agents in the formation and the new agent converge to
zero quickly, which shows the effectiveness of our proposed
control protocols.

Fig. 4. Tracking errors in 3-D space.

Overall, the simulations demonstrate the effectiveness of
our proposed formation maneuver control method in both
2-D and 3-D space. A key advantage of our method is
the capacity to perform arbitrary rotations, which allows
for complex maneuvers. Furthermore, our method achieves
formation maneuverability with only two leaders in 3-D
space. Additionally, the proposed method does not require
convex or generic configurations, providing greater flexibility
in formation design. These features collectively contribute
to the robustness and versatility of our formation maneuver
control method.

VI. CONCLUSIONS

This work introduces a general formation maneuver con-
trol method in both 2D and 3D space based on a novel
constraint called augmented Laplacian matrix. The proposed
method enables the formation to translate, scale, and rotate
with any orientations. Moreover, for practical applications,
we propose the dynamic agent reconfiguration approach,



which allows new agents to join the formation, while main-
taining the original configuration. Eventually, we give the
relationships between our proposed method and the 2-D
complex Laplacian method, which can be considered as a
special case of our approach.
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