Computer Science > Computation and Language
[Submitted on 15 May 2025]
Title:Dark LLMs: The Growing Threat of Unaligned AI Models
View PDF HTML (experimental)Abstract:Large Language Models (LLMs) rapidly reshape modern life, advancing fields from healthcare to education and beyond. However, alongside their remarkable capabilities lies a significant threat: the susceptibility of these models to jailbreaking. The fundamental vulnerability of LLMs to jailbreak attacks stems from the very data they learn from. As long as this training data includes unfiltered, problematic, or 'dark' content, the models can inherently learn undesirable patterns or weaknesses that allow users to circumvent their intended safety controls. Our research identifies the growing threat posed by dark LLMs models deliberately designed without ethical guardrails or modified through jailbreak techniques. In our research, we uncovered a universal jailbreak attack that effectively compromises multiple state-of-the-art models, enabling them to answer almost any question and produce harmful outputs upon request. The main idea of our attack was published online over seven months ago. However, many of the tested LLMs were still vulnerable to this attack. Despite our responsible disclosure efforts, responses from major LLM providers were often inadequate, highlighting a concerning gap in industry practices regarding AI safety. As model training becomes more accessible and cheaper, and as open-source LLMs proliferate, the risk of widespread misuse escalates. Without decisive intervention, LLMs may continue democratizing access to dangerous knowledge, posing greater risks than anticipated.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.